CO₂ Is All Over - Where Can We Reduce?

POUNDS OF CO ₂ RELEASED BY				
Long distance bus	0.2 lb CO ₂	per passenger mile	Routes designed so buses are full	
Train	0.4 lb CO ₂	per passenger mile	Same for local & long distance trains	
Local bus	0.7 lb CO ₂	per passenger mile	Bus empty much of route; many stops	
Car	-	per mile at 28 mpg per mile at 17 mpg	52 Saves CO_2 ! Website shows how 52mph saves CO_2	
Airplane	1.2 + 230 ÷miles	per passenger mile	Plane, car, bus & train include making vehicle, fuel, roads, rails, airports, etc.	
Telecommunication	0.6 lb CO ₂			
Hotel, restaurant	1 lb CO ₂	per dollar spent	Based on fuel & other inputs for each sector in the economy	
Construction	1.3 lb CO ₂		each sector in the ceonomy	
POUNDS OF CO ₂ RELEASED WHEN THEY MAKE & DELIVER				
Computers	0.3	lb CO ₂ per dollar spent		
12 oz. bottle	0.38	lb CO ₂ for glass bottle, 0.15 for plastic, 0.28 for alum. can		
Red meat	22	lb CO ₂ per lb of	Recycling saves 90% of CO ₂ in plastic	
Dairy, eggs, chicken	4-6	product	& aluminum, 40% in paper, glass, steel	
Veg, oil, carb	2-3	This card: $1 \text{ oz } CO_2$	For all sources:	
Plastic, paper, etc	1-2	Mailing it: $1 \text{ oz } CO_2^2$		

CO₂ Dividend: A \$1,300 annual dividend paid to every citizen, funded by 3ϕ fee per pound of CO₂ could reduce CO₂ enough (UN Development Program). We can stop extinction of 35% of bird species, 52% of amphibian species and 72% of coral species (IUCN). *09Dec11*

For a perspective on CO₂, each of the following releases one ton (2,000 pounds) of CO₂:

- 90 lb of red meat (methane from cows, N₂O from nitrogen-fixing bacteria on feed)
- **300** lb of chicken, fish or eggs (N₂O from growing grain they eat)
- **500** lb of **dairy** (methane, N₂O, farm equipment)
- **700** lb of cereal or carbohydrate (N_2O & farm equipment)
- **1,200** lb of **fruit or vegetables** (N₂O & farm equipment)
- 1,000 lb of paper or plastic
 - **1** year of **electricity** at constant 100 watts
 - 26 square feet of living & working space (building it)
 - **100** square feet of **solar collectors** (manufacture)
- **20,000** gallons of **hot water** (heated 55°F with gas; solar would allow far more)

700,000 disposable plastic bags, recycled

- **1,600** passenger miles in a **plane 1,600** miles in a **28 mpg car 2,000** All include making vehicle, road, rails, airports, etc. Most efficient car speed is 46-53 mph. **52** saves CO2!
- 2,000 miles in a 40 mpg car
- 3.000 passenger miles in a local bus (bus empty much of route)
- 3,000 miles walking (producing food, shoes & sidewalk)
- 5,000 passenger miles in a train
- **8,000** miles **bicycling** (producing bike, bike lanes & food, or electricity for e-bike)
- **12,000** passenger miles in a **long distance bus** (routes designed so buses are full)
- 1,700 of spending. On average, 1,700 spent in the US releases a ton of CO₂. So does:
- **\$1,500** of spending on construction (energy, making concrete, other materials)
- \$2,000spent on hotels or restaurantsThis card: 1 oz CO2\$3,000spent on education, health, telephone, internetMailing it: 1 oz CO2\$7,000spent on computersFor all sources please link to: CO2List.org

Caller of	POUNDS OF CO2		
	Gas or Equal Energy (=37 Kilowatt Hours)		
Electricity	$66 \text{ lb } \text{CO}_2 \text{ USA average}$		
Hydroelectric	35-400 lb CO ₂ from flooded plants		
Ethanol	35 lb CO_2 to grow crops, clear land		
Coal	\blacksquare 30 lb CO ₂ when used for heating		
Gasoline	24 lb CO ₂		
Natural Gas	19 lb CO ₂		
Nuclear	\blacksquare 10 lb CO ₂ mine, process, defend waste		
Wind	■ 4 lb CO ₂ from construction & land clearing		
Solar	■ 2 lb CO ₂ from manufacture	To:	
USA 4	10.		
	Earth Average 11,000 pounds CO ₂		
China 7,000 pounds CO ₂			
Goal 2,800 pounds CO ₂ (will still warm Earth 2°)			
India 2,4	00 pounds CO ₂		

One way to encourage cuts in CO_2 is to give every citizen a \$1,300 annual dividend, paid for by a 3¢ fee per pound of CO_2 . The dividend brings all money from the fee back to the public, while the fee makes people look for cuts in CO_2 .

UN Development Program says $3-5\phi$ per pound of CO₂ will cut enough. International Energy Agency says 9ϕ .

Each 1ϕ fee raises prices \$20 per ton of CO₂: 90lb of red meat will cost \$20 more, so will driving or flying 1,600 miles.

Reasonable, and enough to encourage conservation.

COOLING THE EARTH

To hold climate change to 2° , we would have to reach a goal of 2,800 lbs CO₂ per person per year (44,000 lbs now in US, 11,000 lbs worldwide). If we cannot cut that far, we have to cool the earth. A <u>study</u> by Lenton+Vaughan compares cooling proposals. All have **huge side effects**. They make these four points:

"By 2050, only stratospheric **aerosol injections or sunshades in space** have the potential to cool the climate back toward its pre-industrial state...

To:

"[L]arge **reductions** in CO_2 emissions, combined with global-scale air capture and **storage**, **afforestation**, and **bio-char** production, i.e. enhanced CO_2 sinks, might be able to bring CO_2 back to its pre-industrial level by 2100,

"[S]tabilising CO_2 at **500 ppm**, combined with [more <u>reflective</u>]... clouds, grasslands, croplands and human settlements might achieve a patchy cancellation...

"**Ocean** fertilisation options are only worthwhile if sustained on a millennial timescale... Enhancing ocean upwelling or downwelling have trivial effects on any meaningful timescale."

Of all the options, **<u>bio-char</u>**, <u>reflective roofs</u>, and reduced <u>soot</u> seem to have the least harmful side effects.

